THE TOTAL SYNTHESIS OF l-OXYGENATED EUDESMANE SESQUITERPENES : $($ ^{\pm}) DIHYDROREYNOSIN AND $($ \pm [']) 1-OXOCOSTIC ACID Luc Van Hijfte^l and Maurits Vandewalle^x Department of Organic Chemistry, State University of Ghent, Laboratory for Organic Synthesis Krljgslaan, 281 (S.4), B-9000 GENT (Belgium)

SUMMARY

The total synthesis of $\binom{+}{1}$ dihydroreynosin 1 and of $\binom{+}{1}$ 1-oxocostic acid 2 $(R = H)$ are illustrative examples for a short entry into l-oxygenated eudesmanes via an easily accessible key intermediate 7.

Many total syntheses of eudesmanes have been accomplished²; however the 1 oxygenated numbers comprise an important subclass whrch has received little attention from a synthetic viewpoint³. We want to describe a short highly stereoand regioselective approach to this subclass with special emphasis on those members which carry a heavily functlonallzed C-7 "Isopropyl group" amenable for lactone ring formation; therefore including also some eudesmanolldes as target molecules. Eudesmanolides⁴ possess a y-lactone ring mostly closed in a trans manner toward C-6 and about 45 % of them carry an oxygen function at C-l. Many members contain $3, 4-$, $4, 5-$, $4, 15$, $11, 13$ -double bonds. A characteristic feature of the eudesmane framework 1s the relative cis configuration of the C-7 side chain and the angular methyl group. The approach 1s based on previously discussed photocycloaddition reactions of 1,2-bis(trimethylsiloxy)cycloalkenes⁵ with 2-cycloalkenones and allows a facile construction of key intermediate 7 $(+8)$. The potentiality of 7 (+8) is illustrated by the synthesis of $(\frac{1}{2})$ dihydroreynosin 1^6 and of $(\frac{1}{2})$ 1-oxocostic acid 2⁷ (R=H).

All, but one, of the carbon atoms of the eudesmane skeleton were assembled during the photocycloaddition of $\frac{3}{2}$ and $\frac{4}{2}$ (350 nm, pentane, N₂, r.t.). The crude product (5; major isomer⁸) was reduced (NaBH_A, MeOH, -20°C, 1 h); subsequent hydrolysis and oxidative cleavage (NaIO₄, H₂O-MeOH, r.t., 30 min, dark) afforded 6 which upon column chromatography on S10₂ partially isomerized to the trans fused epimers $\frac{7}{6}$ and $\frac{8}{3}$ (36 % combined overall yield from $\frac{4}{3}$). Stirring an ether solution of 6 in the presence of S10₂ (r.t., 48 h) cleanly led to an equilibrium mixture $(7 + 8 : 6 = 9:1)$ from which the epimers 7 and 8 were Isolated In 87 % yield upon crystallization from ether.

Epimers 7 and 8 will be potential key intermediates if both carbonyl functions can be differentiated. During the study for this differentiation a remarkable observation was made. Starting from the epimers 7 and 8 , a complete stereo-

2229

homogeneous TMS ether 9 was formed (98 % yield; TMSCl, Et₃N, DMF, r.t., 2 h) as was proven by the ¹H NMR spectrum (9 : 13-CH₃; δ = 1.10, J = 7 Hz, 1 doublet; $7+8$: 2 doublets at 1.13 and 1.20 ppm (J = 7.25 Hz)). Concommitant equilibration to the most thermodynamically stable C-11 isomer had occurred; this was confirmed by treatment of the mixture $\overline{2}$ and $\frac{8}{2}$ with Et₃N in DMF (2 h at r.t.) which led to pure 7 | m.p. 143°C; v 1735, 1710 cm⁻¹; δ (CDC1₃) 3.93 lH, ddd, 9.50 Hz, 11 Hz and 2.25 Hz), 3.68 (3H, s), 3.35 (OH, 1H, d, 2.25 Hz), 1.13 (3H, d, 7 Hz), 1.03 (3H, s); m/z at 282 (M^+ , 3) 195 (100)].

This result suggests a hydrogen bond between the ester and hydroxyl functions, thereby fixing the side chain in a preferred cyclic conformation. As can be deduced from Dreldlng models the most stable conflguratlon should carry an α oriented 13-CH₃ group (vide infra).

Formation of the TMS ether 9 not only provided a highly stereoselective route but also allowed complete regiocontrol⁹. The TMS ether function efficiently blocked the 4-carbonyl group; $NABH_4$ reduction of 9 in MeOH (-30°C, 10 min) and subsequent acid hydrolysis afforded stereohomogeneous 10 in 95 % yield

after crystallization from ether $|10 : m.p. 153-154°C; v : 3420, 1730, 1710$ cm^{-1} , δ (CDC1₃) 3.86 (1H, ddd, 9.5, 9, 2.5 Hz), 3.84 (1H, dd, 11.5, 4.5 Hz), 3.68 (3H, s), 3.1 (OH; 1H, d, 2.5 Hz), 2.97 (1H, qd, 7.25 Hz, 4.75 Hz), 2.22 (1H, d, 9.5 Hz), 1.12 (3H, d, 7.25 Hz), 0.8 (3H, s); m/z at 284 (M^+ , 1), 41 (100) |. Ketone $\underline{10}$ is a direct precursor for the synthesis of (1) dihydroreynosin 1; formation of 1 proved the assumed configuration at C-11 in 7. Treatment of 10 with an excess methylene triphenylphosphorane (THF, HMPA, 1:3) gave albeit in low yield (21 %) directly (1) dihydroreynosin 1; the major product was keto acid $\underline{11}$ (71 %) occurring from β -elimination. The spectral properties of synthetic $1 \mid m.p. 108^{\circ}C$; v : 3360, 1747 cm⁻¹, δ (CDC1₃) 4.97 (1H, s), 4.83 (lH, s), 4.05 (lH, dd, 10.5 and 10.5 Hz), 3.5 (lH, dd, 11 and 4.6 Hz), 1.23 (3H, d, 6.75 Hz), 0.83 (3H, s); δ (C₆D₆) 1.00 (3H, d, 6.75 Hz); m/z at 250 $(M^+, 47)$; 206 (100); 149 (90) | were identical to those of natural dihydroreynosin $6,10$ (m.p. 120 $^{\circ}$).

Treatment of $\frac{7}{5}$ and $\frac{8}{5}$ with Burgess reagent¹¹ (MeOOCNSO₂NEt₃, benzene, 55°C, 3 h) led to enone <u>12</u> |m.p. 73°C; v : 1730, 1710, 1690, 1615 cm⁻¹; δ (CDCl₃) 6.87 (lH, dd, 1.3 Hz, 2.2 Hz), 3.69 (3H, s), 1.3 (3H, s), 1.24 (3H, d, 6.75 Hz); m/z at 264 (M^+ , 84), 176 (100); UV : 243 nm in which both carbonyl groups are differentiated because of electronic reasons. Reduction of 12 (NaBH_A, MeOH, -30°C, 15 min) followed by catalytic hydrogenation (Pt/C, 5 %, MeOH) and epimerization (DBU, CH_2Cl_2 , 3 days, r.t.) afforded 13 in 72 % yield after column chromatography $(SiO₂)$, benzene-acetone 8:2) $|13;$ 011; v : 3430, 1730, 1710 cm⁻¹, δ (CDC1₃) : 3.82 (1H, dd, 4.75 Hz, 11.5 Hz), 3.67 (3H, s), 1 ¹4 (3H, d, 7 Hz), 0.72 (3H, s); m/z at 268 (M⁺, 8)[|]. Wittig reaction of <u>13</u> with excess ylid (from \varnothing_3 PCH₃Br and t.AmONa, toluene, r.t. 30 min) yielded 14 (86 %) after column chromatography (S10₂, ether-hexane 1:1). Formation of the α -phenylselenide (LDA, ØSeSeØ, THF, HMPA, -78° to -40°C, 3 h) followed by oxidative elimination $(H_2O_2-HOAc-THF, O^{\circ}C, 1 h)$ led to $\underline{15}$ (82 % yield). Collins oxidation of $\underline{15}$ (CrO₃.2 Py, CH₂C1₂, N₂, r.t.) and column chromatography (S1O₂:1sooctane-ethylacetate 8:2) afforded $($ ⁺) 1-oxocostic acid methyl ester 2 (R = Me) in 83 % yield. The spectral properties of $2 (R = Me)$ |m.p. 37°C; v: 1710 (broad), 1650, 1625 cm⁻¹; δ (CDCl₃) : 6.18 (1H, d, 0.5 Hz), 5.58 (1H, t, 1 Hz), **4.99** (lH, d, 1.5 Hz), 4.73 (lH, d, 1.5 Hz), 3.76 (3H, s), 1.01 (3H, s); 6 (C₆D₆) : 6.27 (1H, d, 0.5 Hz), 5.35 (1H, t, 12 Hz), 4.84 (1H, d, 1.5 Hz), 4.64 (1H, d, 1.5 Hz), 3.49 (3H, s), 0.87 (3H, s); m/z at 262 (m^{+} , 8); UV : 212 nml were identical to those of 2 (R = **Me)** derived from the natural l-oxocostic acid^{7,12}. Hydrolysis (K₂CO₃, MeOH, H₂O, reflux, 12 h) of 2 (P=Me) gave ([†]) 1-oxocostic acid 2 (R=H)(83 %), $|m.p. 118^{\circ}C; \delta$ (CDC1₂) : 6.34 (1H, br. s), 5.72 (1H, br. s), 5.00 (1H, d, 1.2 Hz), 4.75 (1H, d, 1.2 Hz), 1.03 (3H, s) |.

We thank the NFWO and the "Ministerie voor Wetenschapsbeleid" for financial help to the laboratory.

REFERENCES

- 1. Aspirant of the "Natlonaal Fonds voor Wetenschappell)k Onderzoek".
- 2. (a) C.H. Heathcock; The total synthesis of natural products (Ed. J. Ap-Simon - John Wiley & Sons, 1973) 2, 197; (b) J.W. Huffmann, C.A. Miller, A.R. Plnder; J. Org. Chem., 1976, 41, 3705-3714; (c) W.C. Still, M.J. Schneider; J. Am. Chem. Soc., 1977, 99, 948; (d) J.A. Marschall, G.M. Wutz; J. Org. Chem., 1978, 43, 1086; (e) F. Kldo, K. Tsutsumi, R. Maruta, A. Yoshlkoshi; J. Am. Chem. Sot., 1979, 101, 6420; (f) B.D. MacKenzie, H.M. Angelo, J. Wollnsky; J. Org. Chem., 1979, 44, 4042; (g) J.D. Godfrey, A.G. Schultz; J. Am. Chem. Soc., 1980, 102, 2414.
- 3. W.A. Wood; Diss. Abst. Int. B, 1978, 39(2), 760-1.
- 4. N.H. Fischer, E.J. Ollvler, N.H. Fischer; Progress In the Chemistry of Organic Natural Products, 1979, 38, 47.
- 5. (a) D. Termont, P. De Clercq, D. De Keukeleire, M. Vandewalle; Synthe-**SlS,** 1977, 46 ; (b) M. Van Audenhove, D. De Keukelelre, M. Vandewalle; Tetrahedron Lett., 1980, 1979; (c) M. Van Audenhove, D. De Keukeleire, M. Vandewalle; Bull. Soc. Chim. Belges, 1981, 90, 255.
- 6. M. Ogura, G. Cordell and N.R. Farnsworth; Phytochemistry, 1978, 17, 957.
- 7. F. Bohlmann and J. Jakupovic; Phytochemistry, 1979, 18, 1189.
- 8. The relative configuration at C_7 and C_{10} was proven at the stage of product 7. High stereoselectivity for the photoaddition of piperitone with cyclobutenes has already been observed; see ref. 5c and references cited therein. It is worthwhile mentioning that no stereoselectivity was observed when the cyclohexenone carries a C-6 acetic acid methyl ester side chain.
- 9. We also observed that methylene triphenylphosphorane reacted exclusively (83 % yield) with the 1-carbonyl group In 2.
- 10. We thank Dr. G. A. Cordell for kindly sending us copies of the spectra of L.
- 11. E.M. Burgess, H.R. Penton Jr. and E.A. Taylor: J. Org. Chem., 1973, 38, 26.
- 12. We thank Prof. F. Bohlmann for kindly sending us copies of the spectra of 2 (R = Me).

(Received in UK 30 March 1982)

2232